

An *in vitro* dosimetry dose application for the numerical transport of engineered nanomaterials

N. Cheimarios¹, B. Pem², A. Tsoumanis¹, K. Ilić², I. Vinković Vrček², G. Melagraki³, D. Bitounis⁴, P. Isigonis⁵, M. Dusinska⁶, I. Lynch⁷, P. Demokritou⁴ and A. Afantitis¹

BIRMINGHAM ¹NovaMechanics Ltd., Nicosia, Cyprus, ²Institute for Medical Research and Occupational Health (IMROH), Zagreb, Croatia, ³Hellenic Army Academy, Athens, Greece, ⁴Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, USA, ⁵Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 30172 Venice, Italy, ⁶Department of Environmental Chemistry, Health Effects Laboratory, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway, ⁷School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Introduction

Engineered nanomaterial (ENM) toxicity testing using *in vitro* assays requires the ENMs to be dispersed in cell culture medium, and applied to multiwell cell culture plates. There are numerous techniques and protocols for dispersing ENMs in aqueous media that should be harmonized¹. Various endpoints are measured during in vitro testing following the exposure, commonly lasting for 24-48 h, and the dose-response relationship is commonly reported². However, the effective dose is not necessarily equal to the nominal dose, since the cells seeded in the plate wells will only react with the ENMs that reach the bottom of the plate. Therefore, for the correct reporting of the ENM dosage regimen, the nominal dose should be adjusted³. De Loid et al.² addressed the aforementioned issues by developing a multi-step in vitro dosimetry methodology to quantify delivered dose metrics as a function of time which consists of three interconnected parts: 1) ENM dispersion preparation; 2) ENM dispersion characterization; 3) numerical transport modeling to derive the delivered dose metrics. We developed a user-friendly web-based application, termed as "*in vitro* dosimetry application" designed especially for non-expert users.

The web application

The *in vitro* dosimetry application is based on the Distorted Grid (DG) fate and transport model² and calculates the mass, number and surface area-based concentrations in the cellular microenvironment throughout the duration of the exposure. Details of the DG fate and trsnport model can be found in [2]. In the **Particle parameters**, the user defines the input regarding the particular ENM. The available ENMs are CeO₂, SiO₂, Fe₂O₃, TiO₂, CuO, ZnO, Au, Ag, FePO₄ (anhydrous) and "User defined ...". The user must provide the effective density of the ENM with the solvent, and the fraction distribution by volume (-) or the % number-weighted size (-) vs the diameter (nm) for the specific ENM. In the **Solvent parameters** the user defines solvent related information and in particular density (gr/cm3), viscosity (P) and temperature (°C) while for the **Simulation parameters** simulation related information and in particular the height (mm) of the suspension column, the height, h of the compartment, the initial concentration (mg/cm3) of the ENM, the total simulation time (hours) and the time interval (Δt - sec) of the simulation. In the **Advanced parameters** the user can define the time interval and the compartment height to save the data and the choice to save the data for all the suspension column height or just for the bottom.

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

40749MD

concentration (mg/cm³)

Schematic of the ENMs suspension column. The basic geometrical characteristics are shown along with the compartments *i*-1, *i* and *i*+1 and the inflow and the outflow of solute species *j*. The cells are located at the bottom of the suspension column.

Case study

Six different ENMs are used as case studies for the demonstration and proof-of-concept of *in vitro* dosimetry application. All ENPs were designed, prepared and characterized in the IMROH laboratories and included two different gold ENPs, coated with cysteine (CYS) and glutathione (GSH), and four different silver NPs (AgNPs), coated with CYS, GSH, bis(2-ethylhexyl)sulfosuccinate (AOT), and poly-L-lysine (PLL). Preparation, characteristics and toxicity evaluation of CYS- and GSH-coated AgNPs and AuNPs in murine fibroblast cells (L929 cell line purchased by ATCC® CCL- 1TM) have been described recently⁴, while AOT- and PLL-coated AgNPs were prepared according the procedure described in [5]. The input parameters for solvent (cell culture medium) were set at the 0.9995 g/cm³, 0.00081 P and 37°C for the effective density, viscosity and temperature, respectively. The simulation parameters were

Solvent parameters		Output parameters			
Density (gr/cm3)	0.9995	Time interval (min)		30	
Viscosity (P)	0.00081	Compartment height (mm)		0.01	
Temperature (oC)	37	Write output for	 all data 		
		write output for		botto	lata tom area only
Simulation parameters					
Suspension column height (mm)	3	Advanced parameters			
Height of subcompartment (mm)	0.005	Sedimentation-concentration dependence constant, ks (~0.0 - 0.1)	0		
Initial total concentration of material	0.1	Diffusion-concentration dependence constant, kd (~0.0 - 0.1)	0		
(mg/cms)	1	Initial dissolution fraction (-)	0		
Centilidgation (1 for gravity)	1		🔘 no further di	ssolution after ini	tial dissolution (stable)
Total time of simulation (h)	24	Dissolution rate type	 fraction of or specified time 	riginal per hour (on the standard strains and fractions and fractions strains and strains strains and strains a	constant) (specified curve, interpolated lin
Time interval for simulation (s)	0.5	Sticking bottom (-)			
		Adsorption dissociation constant (-)	1e-9		

Material	CeO2	•
Density (gr/cm3)	7.215	
Distribution type	fraction distribution by volum	•
Effective density (gr/cm3)	1.483	

Results & discussion

The results for the ENPs concentrations at the bottom of the suspension column for the various ENPs are shown in Fig. 1. The nominal value for all cases is 0.01 mg/cm³ which is shown with a white dashed line in Fig. 1. Clearly, besides CYS AgNP where the value of the concentration is almost the same as the nominal, in all other cases the concentration is higher and can be as many as $x40.^{6}$

Chsydomo

GSH AgNo

dNgk

PLL

Nominal: 0.01 mg/cm³

GSH AUND

Chs Aumo

Conclusions

In vitro dosimetry application is the first freely available web-application for the estimation of the concentration of ENPs in suspension columns. Clearly, comparing to the nominal, the computed concentration is higher in most of the cases which can be a serious drawback as far as the toxicity of the ENPs is concerned.

References

- 1. Hartmann et al. (2015), J. Toxicol. Environ. Health B Crit. Rev. 18, 299.
- 2. DeLoid et al. (2017), *Nature Protocols* **12**,355.
- 3. Liu et al. (2015), *ACS nano.* **9**, 9303.
- 4. Pem et al. (2019), *Beilstein J. Nanotechnol.* **10**, 1802.
- 5. Jurašin et al. (2016), *Beilstein J. Nanotechnol.* 7, 246.
- 6. Cheimarios et al. (2022), Nanomaterials 12, 3935

This project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No814425

Antreas AFANTITIS Managing Director NovaMechanics Ltd

RiskGONE final Consortium meeting and workshop Madrid, 15-16 06 2023